The Puma Operating System

For Massively Parallel Computers

*

Lance Shuler,
Chu Jong, Rolf Riesen, David van Dresser

- Sandia National Laboratories

Arthur B. Maccabe, Lee Ann Fisk
- The University of New Mexico

T. Mack Stallcup
- Intel SSD

Abstract

This paper describes the Puma operating system,
the successor to the Sandia and University of New
Mezico operating system (SUNMOS). Puma is a mul-
tiprocessor operating system that is made up of two
basic structures, the quintessential kernel (Q-kernel)
and the process control thread (PCT). Together, they
provide the user with a flexible, lightweight, high per-
formance, message passing environment for massively
parallel computers. In this paper, we discuss the struc-
ture of Puma and its unique message passing design
based on portals.

Keywords: SUNMOS, Puma, operating systems,
message passing

1 Introduction

This paper describes the Puma message passing
operating system that is under development at San-
dia National Labs and the University of New Mexico.
Puma is the successor to the Sandia and University of
New Mexico operating system (SUNMOS). Puma in-
herited many of SUNMOS’s goals including small size,
high performance, and scalability. Puma is a mul-
tiprocessor operating system that has expanded mes-
sage passing capability through a new message passing
mechanism known as portals. A portal 1s essentially

*This work was performed at Sandia National Laboratories,
operated for the U.S. Department of Energy under contract No.
DE-AC04-76 DP00789

an opening in the user’s address space, from which or
to which another node may read or write data.

This paper describes the structure of Puma and
the portal message passing concept. Section 2 cov-
ers the structure of Puma. Section 3 describes the
trust mechanism of Puma. Section 4 covers the mes-
sage passing mechanism using portals and Section b
provides a summary.

2 Puma Structure

The Puma operating system can be broken down
into two operating system entities known as the
quintessential kernel (Q-kernel) and the process con-
trol thread (PCT). Together, they provide the user
with the support needed for a high performance, mul-
tiprocessor, message passing environment.

2.1 Rationale

Figure 1 shows the structure of the Puma operating
system. The criteria that motivated this form of the
Puma design are as follows:

e The Q-kernel must occupy minimal space.

(Small)

e The Q-kernel must remain alive through software
faults. (Persistent)

e The Q-kernel must not grow in size as the number
of nodes increases. (Scalable)

Shrinking the size of the kernel necessitates the
moving of some kernel level tasks and structures out
of kernel space and into user space. Specifically, most
structures relating to message passing were moved into
the user process’ space. In addition, the functional-
ity covering the management of system resources was
moved out of the kernel and put under the responsibil-
ity of the process control thread or PCT. The message
passing side of Puma will be discussed later in more
detail. The two sections below will discuss the rela-
tionship between the Q-kernel and the PCT.

User Processes

Control
s

Quintessential
Kernel

Figure 1: Puma Structure

2.2 Quintessential Kernel

Figure 1 shows the Q-kernel as the lowest level of
the operating system. It sits on top of the hardware
and performs hardware services on behalf of the PCT
and user processes.

The Q-kernel supports the minimal set of tasks that
require execution in supervisor mode. Some of these
tasks include handling interrupts and handling hard-
ware faults. In addition, the Q-kernel performs super-
visor mode services requested by the PCT such as mes-
sage dispatch and reception, context switching, virtual
address manipulation, and running a process. The Q-
kernel also handles message dispatch and reception on
behalf of user processes.

The Q-kernel does not manage system resources,
however. For instance, the Q-kernel does not per-
form process loading, manage process virtual address
spaces, or do job scheduling. The Q-kernel’s primary
function is to handle hardware interrupts and excep-
tions, and to perform specific tasks on behalf of the
PCT and user processes that must be executed in su-
pervisor mode.

By removing the management tasks from the kernel
level, we succeed in building a kernel that is small

and that has a minimal set of clearly defined tasks to
perform. Such a kernel is simple to maintain, fast,
and reliable in the sense that because of its small size,
it has a much smaller window in which a failure can
occur.

2.3 Process Control Thread

Figure 1 shows the PCT in user space sitting on top
of the kernel, yet seperate from other user processes.
The PCT is essentially a user level thread with special
privileges. It has read/write access to all memory in
user space and is in charge of managing all operating
system resources. This involves process loading, job
scheduling, and memory management. In addition,
the PCT may initiate contact with an available server
on behalf of a user process.

The PCT and the Q-kernel must work together to
provide a complete operating system. The PCT will
decide what physical memory and virtual addresses a
new process is to have and at the behest of the PCT,
the Q-kernel will setup the virtual addressing struc-
tures for the new process that are required by the
hardware. The PCT will decide which process is to
run next and at the behest of the PCT, the Q-kernel
will flush caches, setup the hardware registers, and
run this process. Notice the clear seperation between
resource management and kernel task execution. The
PCT acts as manager and the Q-kernel acts as hard-
ware request server.

2.4 Features

Some attractive features result by splitting oper-
ating system functionality between the Q-kernel and
the PCT. These include fault tolerance and multiple
resource management policies.

The small size and well defined tasks of the Q-kernel
make reliable software fault tolerance realizable. Even
if the PCT faults for some reason, the Q-kernel can
remain alive ensuring that the node remains alive. For
large Paragons, such as the one at Sandia, this means
large savings in downtime, since many software faults
that take down a node require a reboot of the whole
machine as well as the reloading of currently running
applications. In the scenario we present here, the PCT
simply needs to be reloaded, and the local running
applications need to be restarted.

Another attractive feature is the flexibility that can
be achieved by a modular PCT. There can be only one
PCT per node. However, one may have several PCTs
to chose from. One could have a PCT that is sin-
gle tasking, a PCT that is multitasking, a PCT that

does priority scheduling, a PCT that does round robin
scheduling, a development PCT that supports debug-
ging and profiling, and a performance PCT that sup-
ports no debugging or profiling. All of these would sit
on top of the same Q-kernel, but would have different
management policies.

In addition, a site could have two machine parti-
tions, one that runs a performance PCT that is single
tasking with no debugging and one that runs a de-
velopment PCT that is multitasking and supports de-
bugging and profiling. Repartitioning requires simply
reloading PCT’s in a different configuration, rather
than rebooting the whole machine.

3 Trust

Puma 1s based on a system of multiple levels of
trust. The Q-kernel trusts other Q-kernels. A corol-
lary to this is that the Q-kernel trusts the network,
since no message will enter the network except by way
of another Q-kernel. Q-kernels do not trust PCTs or
USer processes.

The PCT trusts the Q-kernel and other PCTs.
PCTs do not trust user processes. User processes trust
both the Q-kernel and the PCT.

High performance is achieved through this trust
model. Since the Q-kernel trusts the network, mes-
sages do not have to go through a source verification
process. They can be immediately deposited in user
space. This significantly cuts time out of the latency
path.

Address verification 1s necessary in the Q-kernel,
but only at a few well defined set of kernel entry points.

4 Message Passing

Puma message passing is based on a new concept
known as a portal. A portal is essentially an opening
in an application’s address space to which data can be
directly read from or directly written to using message
passing. Portals are designed to avoid memory copies
that are required when there is send side or receive
side message buffering. In addition, portals provide a
way for the Q-kernel to reply to read requests with-
out having to perform a context switch and move to
user mode. Memory copies and upcalls to user mode
are costly operations. Portals are designed to avoid
both. The sections below describe the portal message
passing concept and present the basic portal message
passing structures.

4.1 Portals

Portals map messages into user space. Figure 2 il-
lustrates the mapping. A portal is referenced through
an index into a portal table, where each table entry
refers to either a match list or a memory descriptor. A
memory descriptor describes the layout of the mem-
ory associated with the portal. Matching lists pro-
vide portals with a matching semantic that can be
used to bind specific messages to specific memory re-
gions. Each entry of the matching list has a memory
descriptor associated with it. A portal may refer to a
memory descriptor directly or to multiple memory de-
scriptors indirectly through a matching list. It should
be noted that due to issues of scalability, the portal ta-
ble, matching lists, and memory descriptors all reside
in user space, rather than in kernel space.

Memory
Descriptors

——
—
. —
. —
+———

Portal Matching
Table Lists

—1

—1

I E—)
T— 1
T— 1
—
I E—)
— 1
T[]

Figure 2: Portal Structure

4.1.1 Memory Descriptors

Memory descriptors describe the layout of the memory
associated either with the portal descriptor or with a
match list entry. For the discussion in this section, the
way the memory descriptor is attached to the portal
is 1rrelevant. Puma supports four types of memory
layout.

Dynamic layout
e Single block layout
e Combined block layout

e Independent block layout

There are also several options associated with mem-
ory descriptors that are considered orthogonal to de-
scribing memory layout. One option that has already
been mentioned is having a matching semantic by us-
ing the matching lists. In addition, a memory descrip-
tor may be designated as read only or as write only.

An additional option is being able to specify either
sender or receiver managed offsets for read and write
operations. When the sender manages the offset, mes-
sages can specify an offset into the portal where data
should be read from or should be written to. This
i1s particularly useful when implementing multinode
servers that work together to service an application’s
I/0O requests. With receiver managed offsets; the re-
ceiver increments the offset each time data is read
from or written to a memory descriptor. Since data
is incrementally read or written from the beginning
of the memory block to the end, it is important that
read/write requests arrive in the proper order.

There are some memory descriptors that describe
the layout of memory in terms of an array of buffers.
There is an option for viewing these buffers as a linear
list or as a circular list of buffers.

Another option allows the user to choose whether
or not to acknowledge (ack) write operations. The ack
includes information describing which write operation
was applied to the memory descriptor on the receiving
end. The possibilities for write operations are:

e Save header
e Save body

e Save header and body

Each memory descriptor may allow only a subset of
these orthogonal options. However, matching seman-
tics is the one option common to all memory descrip-
tors. The semantics of the different memory descrip-
tors and their associated options are described below.

Dynamic Figure 3 illustrates the organization of a
dynamic memory descriptor. The memory descriptor
points to a block of memory that is laid out in the form
of a heap. Within the heap, the Q-kernel maintains
a linked list of free memory blocks and a linked list
of arrived messages. When the Q-kernel receives a

message destined for this type of memory descriptor,
the it mallocs memory out of this heap, deposits the
message, and adds the message onto the end of the
arrived messages list. A message may be unlinked and
freed by the application at the user level.

Regarding orthogonal options, the dynamic mem-
ory descriptor may not be read from, and hence is
write only by default. The acknowledgement option
on write operations is allowed. Sender and receiver
managed offsets are not supported and neither is the
save-body write operation. The save-header and save-
header-and-body operations are supported.

memory
descriptor

Arrived Messages List

HEAP

Figure 3: Dynamic Memory Descriptor

Single Block Figure 4 illustrates the organization
of a single block memory descriptor. The memory de-
scriptor points to a single contiguous block of memory.
This memory descriptor was designed to permit multi-
ple servers to fill in the single block of memory. Since
multiple messages may contribute a piece of data, it
doesn’t make since to save each header, particularly
since the receiver doesn’t know and doesn’t really care
how many servers are being used. As aresult, no head-
ers are saved in a single block memory descriptor as a
matter of policy.

Regarding orthogonal options, the single block
memory descriptor may be setup as read only or as
write only. This single block structure is designed to
take advantage of having multiple servers that man-
age I/O and other services. Hence, sender or receiver
managed offsets are supported with this memory de-
scriptor. The save-header and save-header-and-body
write operations are not supported, but the save-body
operation is supported. In addition, acknowledging
write operations is supported.

Independent Block Figure 5 illustrates the mem-
ory structure in an independent block memory de-
scriptor. The memory descriptor points to an array

memory
descriptor

Figure 4: Single Block Memory Desciptor

of buffer descriptors, each of which points to a con-
tiguous block of memory. As the title implies, each
block is treated as an independent entity. One and
only block of memory is permitted per message. In
addition, the list of buffers is traversed in order. If
the next available buffer i1s not large enough to hold
the arrived message, then the Q-kernel stops immedi-
ately and flags an error bit, even though there may be
messages further down the array that are large enough
to consume the message.

Supported orthogonal options include setting up
the memory descriptor as read only or as write only.
In addition, the array of buffers in the memory de-
scriptor may be designated as linear or circular. Off-
sets are not supported in independent block memory
descriptors. Write operations that are supported in-
clude save-header and save-header-and-body. Finally,
acknowledging write operations is supported.

memory
descriptor
| |

W

Figure 5: Independent Block Memory Descriptor

Buffer Descriptor Table

Combined Block Figure 6 illustrates the memory
structure in a combined block memory descriptor. The
memory descriptor points to an array of buffer de-
scriptors, each of which points to a contiguous block
of memory. The title implies that the memory blocks
are combined in some fashion. Specifically, this mem-
ory descriptor is intended to perform exactly the same
as the single block memory descriptor, except that
instead of containing memory laid out as a contigu-

ous block, the combined block memory descriptor has
memory laid out as a logically contiguous block. In
reality, the logically contiguous block is made up of
an array of memory segments that may not be con-
tiguous.

This memory descriptor supports the scatter and
gather message passing operations. A single message
destined for this memory descriptor that has a length
equal to the sum of all the lengths of the blocks will be
split up and placed into the blocks according to their
order in the array (scatter operation). In the case of
the scatter, the memory descriptor would be setup as
a write only. On the otherhand, the memory descrip-
tor could have the same block structure for a gather
operation, except be read only. A read request on this
memory descriptor for a length equal to the sum of all
the blocks in the combined block memory descriptor
would result in a single message reply consisting of all
the memory blocks assembled according to their order
in the buffer descriptor array.

Like the single block memory descriptor, multiple
servers may read or write to this memory as though
it were one contiguous block. No headers are saved
for the same reason that they are not saved in single
block memory descriptors. In addition, this memory
descriptor supports the same orthogonal options as
the single block memory descriptor.

memory
descriptor

Buffer Descriptor Table

:

Figure 6: Combined Block Memory Descriptor

4.1.2 Matching List

The matching list makes it possible to have matching
semantics for portals at the kernel level. Matching
semantics provide a way to prepost receives, so that a
user has better control of directing which message is
to be deposited where.

When a message arrives at a portal that supports
matching, the Q-kernel searches down the match list
until an entry is found where the following fields match
in both the match list entry and in the message header:

e source group id
e source group rank

e 64 match bits

Depending on the protocol, all of these fields may
be wildcarded in the match list entry. On a success-
ful match, the Q-kernel deposits the message into the
memory descriptor associated with the matching list
entry.

At a particular entry, the Q-kernel could experience
one of the following failures:

e Failure on no match
e Failure on no buffer

e Failure on no fit

Failure on no match means that there was a fail-
ure to match on one of the above listed match fields.
Failure on no buffer means that there is no available
buffer in the memory descriptor for the message. Fail-
ure on no fit, means that there may be memory in an
available buffer of the memory descriptor, but it is not
big enough to hold the message.

Handling these failures requires three-way overflow
branching out of the match list entry. On each of
the failures, the user may specify where to go next.
Typically, failure on no match is handled by going on
to the next match list entry. Handling failure on no
buffer or no fit depends on the protocol. The proto-
col could designate that the message be dropped by
pointing to the end of the list. On the otherhand, the
protocol could point to an overflow memory descriptor
that simply saves the message header for future use.
The matching list provides a great deal of flexibility
in handling overflow conditions and is not restricted
to the cases mentioned here.

4.2 Portal Issues

We mentioned earlier that all the message passing
structures are in user space. This makes it easy for
users to manage the portal structures without having
to pay the cost of trapping into the Q-kernel. In ad-
dition, this allows the Q-kernel to remain small even
though the number of processes per node may be large.

There are some issues associated with having mes-
sage passing structures in user space, however, that
must be addressed. At any time, an application may
intentionally or accidentally corrupt the portal struc-
tures that the Q-kernel may be accessing. Thus, the
Q-kernel must have the proper address verification

mechanisms available to protect itself against the ap-
plication. It is a general Puma policy to allow an ap-
plication to harm itself (including writing over its own
stack), but it cannot be allowed to hurt the Q-kernel,
PCT, or other running applications.

Another problem with having the user manipulate
portal structures rather than the Q-kernel is the prob-
lem of race conditions. For instance, suppose a portal
is setup with a matching list that points to posted re-
ceives and an overflow buffer. The user level receive
will first check to see if there 1s a matching message
in the overflow memory discriptor. If there is no such
message, then the user level receive will post the mes-
sage into the matching list. However, during the time
that the user level receive is setting up the posted
receive, the target message may arrive. The Q-kernel
may search through the matching list that still doesn’t
have the posted receive yet, and place the message
in the overflow memory descriptor. Only after the
message 1s tucked away in the overflow, does the post
receive operation complete. The message essentially
snuck in and the user application never saw it. There
are techniques for handling race conditions that will
solve such a scenario. Library writers and users who
work with portals will need to employ these techniques
in order to ensure proper protocol implementations.

5 Summary

In this paper, we described the organization of the
Puma operating system. We discussed the structure
and cooperative relationship of the Q-kernel and the
PCT. We demonstrated how this split operating sys-
tem structure naturally provides feature benefits in
the areas of fault tolerance and flexible resource man-
agement policies.

We introduced the fundamental Puma message
passing concept known as a portal. We presented
the organization of a portal and discussed the vari-
ous ways of describing memory using portal memory
descriptors. In addition, we described the semantics of
matching and illustrated how the matching list could
be used to handle posted receives and overflow condi-
tions.

We called attention to the advantages and disad-
vantages of having message passing structures in user
space rather than in kernel space. In particular, li-
brary writers must be careful to employ basic tech-
niques with portals that will eliminate race conditions.
Race conditions may occur anytime a user application
and the Q-kernel access the same structures within the
same time frame.

Finally, we have presented a comprehensive mul-
tiprocessor operating system in Puma that meets
the fundamental demands of today’s massively paral-
lel community: high performance, scalability, persis-
tence, and light-weight message passing functionality.

This paper and other information is available at the
following web site:
http://www.cs.sandia.gov/~ rolf/puma/puma.html

References

[1] Accetta, M.J., et.al. Mach: A New Kernel Foundation
for UNIX Development. Proceedings of the Summer 19865
USENIX Conference, pp. 93-113, July 1986.

[2] Burns, C.M., Kuhn, R.H., and Werme, E.J., Low Copy
Message Passing on the Alliant CAMPUS/800. Proceed-
ings of Supercomputing’92, pp. 760-769, November 1992.

[3] Cheriton, D.R., The V Kernel: A Software Base for Dis-
tributed Systems. IEEE Software, 1(2):19-42, April 1984.

[4] Cheriton, D.R., The V Distributed System. Communica-
tions of the ACM, March 1988.

[5] Maccabe, Arthur B., and Wheat, Stephen R., Message
passing in PUMA. Sandia National Laboratories Technical
Report SAND93-0935, 1993.

[6] Renesse, R. van, and Tanenbaum, A.S., Short Overview of
Amoeba. Proceedings of the USENIX Workshop on Micro-
kernels and Other Kernel Architectures, pp. 1-10, April
1992.

[7] Rozier, M., et.al., The Chorus Distributed Operating Sys-
tem. Computing Systems, 1(4), 1988.

[8] Wheat, Stephen R., Maccabe, Arthur B., Riesen, Rolf, van
Dresser, David W., and Stallcup, T. Mack. PUMA: An op-
erating system for massively parallel systems. Proceedings
of the Twenty-Seventh Annual Hawaii International Con-
ference on System Sciences, pages 56-65. IEEE Computer
Society Press, 1994.

[9] Zajcew, R., et.al., An OSF/1 UNIX for Massively Parallel
Multicomputers. Proceedings of the Winter 1993 USENIX
Conference, pp. 449-468, January 1993.

